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ABSTRACT 
 
This paper reports the development and performance 

of CaMEL_Aero, our truly matrix-free, parallel and 
vectorized unstructured finite volume solver for 
compressible flows. The Jacobian-free GMRES method is 
used to solve the linear systems of equations inside each 
nonlinear Newton-Raphson iteration. Furthermore, the 
matrix-free Lower-Upper Symmetric Gauss Seidel (LU-
SGS) method is employed as a preconditioning technique 
to the GMRES solver. The solver is parallelized using 
mesh partitioning and Message Passing Interface (MPI) 
functions. The solver is also vectorized using two main 
vectorization techniques: the face coloring algorithm to 
vectorize the long loops over faces and the truncated 
Neumann expansions of the inverse of preconditioning 
matrices to vectorize the LU-SGS preconditioner, 
respectively. A few 2D and 3D numerical examples are 
presented to demonstrate the performance of the present 
solver. 

1.  INTRODUCTION 
 
We have developed a cell-centered finite volume 

(FV) solver named CaMEL_Aero for high-speed 
compressible flows. The goal of this solver is to solve 
practical aerodynamic problems arising from aerospace 
and automotive industries in an accurate, efficient and 
robust way.  

 
In CaMEL_Aero, implicit time integration is adopted 

to obtain better efficiency, especially for high Reynolds 
number flows. The implicit time integration results in a 
large nonlinear system of equations for complex 3D 
applications. The Newton-Raphson iterative method is 
used to solve this nonlinear system. Inside each Newton-
Raphson nonlinear iteration, a large, sparse and usually 
ill-conditioned linear system must be solved. The 
Generalized Minimal RESidual (GMRES) solver (Saad 
1996) has been widely used in solving large sparse linear 
systems. The GMRES solver involves only matrix-vector 
multiplication, thus a Jacobian-free (Knoll and Keyes 
2004) implementation is possible. Like other iterative 
methods, the performance of the GMRES solver is highly 

related to the preconditioning. Though the GMRES solver 
itself can be matrix-free (i.e. Jacobian-free), the 
preconditioning technique is usually not matrix-free. A 
matrix-free preconditioning approach was introduced 
(Luo, Baum et al. 1998) for the GMRES solver. In that 
approach, the Jacobian obtained from the low-order 
dissipative flux function is used to precondition the 
Jacobian matrix obtained from higher-order flux 
functions. Using the approximate Lower Upper-
Symmetric Gauss-Seidel (LU-SGS) factorization of the 
preconditioning matrix, their preconditioning is truly 
matrix-free. We combine the Jacobian-free GMRES 
solver and the matrix-free LU-SGS solver in 
CaMEL_Aero in a massively distributed memory 
environment.  

 
Parallel computing becomes indispensable for large-

scale simulations. If the parallel computer is also 
equipped with multi-streaming and vector processors, the 
process of simulating large-scale problems will be further 
accelerated. The Cray X1E is such a supercomputer built 
using a hybrid parallel, vector, and multi-streaming 
design. Codes running on the Cray X1E must be fully 
vectorized for best performance. In CaMEL_Aero, two 
main subroutines need to be vectorized. Both subroutines 
are called extensively by the Jacobian-free GMRES 
solver and consume the vast majority of the total 
computational time. One subroutine is about a long loop 
over faces. In our approach, we separate all faces into 
groups according to the so-called “face coloring” 
algorithm (Tu, Aliabadi et al. 2005b). Another subroutine 
is about the LU-SGS preconditioning. Because this 
preconditioning is based on the LU approximate 
factorization, to avoid the sequential computations in 
solving the triangular system and make vectorization 
possible, we apply the approximate truncated Neumann 
expansions of the inverse of the triangular matrices (Benzi 
and Tuma 1999).  

 
The purpose of this paper is to report the 

development and performance of CaMEL_Aero. In 
Section 2, we will briefly review some key ingredients of 
the development of CaMEL_Aero. Section 3 provides a 
detailed description of the vectorization techniques. In 
Section 4, we will present several 2D and 3D numerical 
examples to demonstrate the performance of the solver. 
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2.  NUMERICAL METHOD 
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Following the standard finite volume discretization 

(hybrid tetrahedral, pyramidic, prismatic and hexahedral 
cells allowed) and using the implicit backward Euler 
formula (BDF) for the time integration, we can obtain the 
following discrete form of the compressible Navier-
Stokes equations for each cell i 
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Here H includes both inviscid and viscous fluxes, n 
is the outward unit normal vector of the faces surrounding 
cell i and Ωi is the volume of cell i. fn is the number of 
faces of the cell and  is the area of kth face of cell i. 

,  and  for first order time 
accurate scheme (BDF1). ,  and 

 for second order time accurate scheme 
(BDF2). 

sΔ
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Remarks. 
 
 The spatial accuracy of the present solver is 

second-order based on linear reconstruction. 
 The inviscid flux across the interface is 

computed through the HLLC (Harten, Lax et al. 
1983; Toro 1999) flux function or the modified 
Steger-Warming (Scalabrin and Boyd 2005) flux 
function.  

 The solution gradient across the cell interface is 
computed via the directional derivative method 
for viscous fluxes (Mathur and Murphy 1997).  

 The one-equation Spalart-Allmaras Detached 
Eddy Simulation (SA-DES) (Nikitin, Nicoud et 
al. 2000) turbulence model is used to compute 
the turbulent eddy viscosity.  

2.1  Jacobian-free GMRES solver 
 
We can use G(U) to stand for the left hand side of 

Eq. (1), i.e. . The standard Newton-Raphson 
iterative method is used to solve this non-linear system, 
leading to 

( ) 0=G U

  (3) ( )δ =−J U G U

where J is the Jacobian matrix and can be computed via 

 1 1α α∂ ∂
≡ = + = +

∂ Δ ∂ Δ
G RJ I
U Ut t

I J

ε

 (4) 

where  denotes the contribution to J from the spatial 
flux terms and I is the identity matrix. 

J

 
Inside each non-linear Newton-Raphson iteration, a 

linear system described as Eq. (3) must be solved. This 
usually huge, sparse and ill-conditioned linear system is 
solved by the Generalized Minimal RESidual method 
(GMRES) (Saad 1996). Because the Krylov space based 
algorithm involves only matrix-vector multiplication, it is 
unnecessary to form the Jacobian matrix explicitly. We 
are able to approximate the matrix-vector product using 
(Knoll and Keyes 2004) 

  (5) [ ( ) ( )] /ε≈ + −Jv R U v R U

where R is evaluated according to Eq. (2). Only the 
spatial contribution  in Eq. (4) needs this approximation 
because the time-dependent term can be evaluated 
exactly. In Eq. (5), the choice of  is a balance between 
the approximation accuracy and the floating point 
rounding error. This approximation has the following 
advantages: (i) avoid the difficulty and cost in forming the 
Jacobian matrix; and (ii) save a significant amount of 
memory for storing the Jacobian matrix.  

J

ε

2.2  Matrix-free LU-SGS preconditioning 
 
In CaMEL_Aero, we adopt the Lower-Upper 

Symmetric Gauss Seidel (LU-SGS) method (Luo, Baum 
et al. 1998) as a preconditioning technique. The Jacobian 
matrix of the low-order dissipative flux function can be 
trivially obtained and is more diagonally dominant and 
more compact than the high-order Jacobian matrix. 
Therefore, the low-order Jacobian matrix is a good 
candidate as preconditioner to the high-order Jacobian 
matrix. We use the simplest and most dissipative flux 
function, the local Lax-Friedrich (LF) flux to establish the 
preconditioning matrix. The local LF flux normal to the 
cell interface can be expressed as 

 1 *1 [ ( ) ( ) ( )]
2LF i j j iλ− ⎧ ⎫⎪ ⎪⎪ ⎪= + − −⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

F T F TU F TU TU TU  (6) 

where i and j are the indices of the left and right adjacent 
cells of the face, respectively, T is the orthonormal 
rotation matrix of the face, and  represents the largest 
wave speed in the direction normal to the interface (Tu, 
Aliabadi et al. 2005a). 

*λ

 
The Jacobian matrix of the flux function described as 

Eq. (6) can be conveniently separated into block diagonal 



part, lower block triangular part and upper block 
triangular part (Luo, Baum et al. 1998; Sharov, Luo et al. 
2000), i.e. 
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U  (7) J D Llow = + +

where the subscript ‘low’ indicates that the Jacobian 
matrix comes from the low-order dissipative flux 
function. Assuming that j < i in Eq. (6), we obtain the L 
operator for cell i contributed by cell j 
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If j > i in Eq. (6), then the U operator is obtained. The 
diagonal block for row i of  can be expressed as lowJ
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which can be represented by a single scalar for each cell. 
Note that the time dependent term is included in D. 

 
The preconditioning matrix is taken as the 

approximate Lower Upper-Symmetric Gauss-Seidel (LU-
SGS) factorization of , namely, J low

  (10) 1( ) (P D L D D U−= + +

By applying the right-preconditioning to the 
Jacobian-free GMRES solver, we obtain the new form of 
Eq. (5). 

  (11) 1 1[ ( ) ( )] /ε− −≈ + −JP v R U P v R U

It has to be stressed that the function R in Eqs. (2), 
(5) and (11) is evaluated following the second order 
reconstruction procedure. Before Eq. (11) can be 
implemented,  must be solved first. This can be 
done by solving 

# 1v P v−=

  (12) #Pv v=

for . Substituting Eq. (10) into Eq. (12) yields  #v

  (13) 1 #( ) ( )D L D D U v v−+ +

which can be solved in two steps in which the block 
forward sweep 

 *( )D L v v+ =  (14) 

is followed by the block backward sweep 

 . (15) #( )D U v Dv+ = *

0
T

ρ

ερ

In Eqs. (14) and (15), the L and U operators are 
computed when needed, thus completely eliminating the 
need to store the preconditioning matrix. In the parallel 
version, the LU-SGS preconditioning is implemented 
locally on each processor to avoid inter-processor 
communications. Numerical experience shows that this 
approximation still yields satisfactory convergence 
performance. 

2.3  A simple slope limiting procedure 
 
The linear reconstruction of a component of the 

primitive vector q, denoted by q, can be expressed for cell 
0 as 

  (16) 0
R
k kq q qφ= + Δ ∇r

where is the reconstructed solution at the center of the 
kth face of cell 0,  is the solution at the cell center, 

 is the distance vector between the face center and the 
cell center,  is the unlimited gradient vector that is 
computed according to the Gauss theorem and is the 
slope limiting factor.  

R
kq

0q

kΔr

0q∇
φ

 
The slope limiter is employed to suppress unphysical 

overshoots/undershoots. We have employed an effective 
slope limiter for triangular and tetrahedral meshes in (Tu 
and Aliabadi 2005a; Tu, Aliabadi et al. 2005c). We found 
that simple extension of that limiter to other types of 
meshes will introduce excessive dissipation. Therefore, 
we design a new limiter that is simple, effective and 
suitable for any types of cells. The limiting procedure 
ensures that no new extrema are allowed during 
reconstruction.  

 
For compressible flows, density ρ is used to compute 

the slope limiter. All components of the primitive vector q 
use this same limiter. We first compute the allowable 
density variation in each cell via 

  (17) max max

min min

max( , )

min( , )

c c
o o

c c
o o

ρ ρ ρ ε

ρ ρ ρ

Δ = −

Δ = − −

where  and  are the maximum and minimum 
density around the cell, respectively. The beauty of the 
above formulation is that they allow some small amount 

max
cρ min

cρ
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ρ

of numerical noise by adjusting positive parameter ε. This 
is important because we do not want the limiter to be 
active in regions where the solution is smooth with 
negligible numerical noise. Numerical experiences show 
that  is sufficient to suppress unphysical 
overshoots/undershoots while not affecting the residual 
convergence too much. Also, note that the computed 

 and  are always positive and negative, 
respectively. We then calculate the unlimited variation of 
density at each vertex i of cell 0 using the unlimited 
density gradient . 

310 10ε −= −
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cρΔ minρΔ c

0ρ∇
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v T
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We compare each  with  and . The 
limiting factor is to limit  to be within the range 
defined by  and . It can be expressed as 
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As can be seen, . The final limiter for the 
cell is obtained by taking the minimum value of φ , i.e. 

.  

0 iφ< ≤

i

min( )i
i

φ φ=

3.  PARALLELIZATION AND VECTORIZATION 
 
CaMEL_Aero was first parallelized on the Cray T3E-

1200 using the ParMETIS mesh partitioning (Karypis and 
Kumar 1998) and the MPI parallel programming module. 
We have communications requirement for vertices, faces 
and cells on the partition boundaries. The inter-processor 
gather/scatter communications subroutines for faces and 
cells are written directly based on those for nodes which 
has been extensively used in our finite element solvers 
(Aliabadi and Tezduyar 1993; Aliabadi and Tezduyar 
2000). Very efficient non-blocking (MPI) functions are 
called to set up the inter-processor “gather” and “scatter” 
routines in the pre-processing stage. The resultant parallel 
scalability performance is excellent. 

 
CaMEL_Aero has also been fully vectorized (Tu, 

Aliabadi et al. 2005b) on the Cray X1 
parallel/vector/multi-streaming architecture. Inside each 
multistreaming processor (MSP), the compiler will try to 
multi-stream and vectorize each loop. For the loop to be 

successfully vectorized by the compiler, the loop must be 
free of any of the following: data dependencies, memory 
contention, I/O statements, non-inlined calls to 
subroutines and functions. The very useful compiler 
option “-rm” can be used to prompt the compiler to 
generate a .lst file for each source file. The .lst file 
reports the multi-steaming and vectorization status of 
each loop in the source file. If the loop is fully multi-
streamed and vectorized, each line of the loop will be 
marked with “MV” at the beginning of that line.  

 
In CaMEL_Aero, a face-based loop is used to 

compute the fluxes across each face. The result is then 
scattered to the two adjacent cells of the face. The “add” 
operation assembles the global cell-based vector 
composed of the residual.  Therefore, the Cray X1E 
compiler will not vectorize loops like this by default 
because of these memory scatter statements, and if we 
force the compiler to vectorize the loop, it is possible that 
two faces access the same cell simultaneously causing 
memory contention. Another situation that prohibits 
vectorization is the matrix-free LU-SGS preconditioner. 
The LU-SGS preconditioner involves solving two block 
triangular linear equation systems which require 
sequential operations. Note that the face loop and the LU-
SGS preconditioner are extensively called by the GMRES 
solver. These two situations consume the vast majority of 
the total computational time. Therefore, the vectorization 
of these two situations is crucial to achieve the optimal 
performance of the code on the Cray X1E.  

3.1  Vectorization of face loops using face grouping 
 
To vectorize the face loops, we divide the faces into 

groups. Inside each group, no two faces share the same 
adjacent cell. Thus, the memory contention problem can 
be avoided. The face grouping can also be designated as 
face-coloring scheme which is similar to the element-
coloring scheme used in vectorizing the node-based finite 
element solvers (Johnson 2003; Aliabadi, Johnson et al. 
2004). This grouping process is done in the pre-
processing stage. With this algorithm, face groups are 
created to contain as many faces as possible.  Once the 
faces are grouped, we will modify the face loop to contain 
an outer group loop and an inter face loop. Since we have 
guaranteed that there will be no memory contention inside 
each face group, we can force the vectorization of the 
inner face loop by applying the “CONCURRENT” 
compiler directive. The pseudo code of the new face loop 
is shown below: 

 
DO IG = 1, NGF  
! NGF is the number of face groups. 
 

IFACE_BEG = FGROUP(IG) 
IFACE_END = FGROUP(IG+1) - 1 
    



!DIR$ CONCURRENT 
DO IFACE = IFACE_BEG, IFACE_END 
   IE1 = IFE(1,IFACE) 
   IE2 = IFE(2,IFACE) 
   ...  
   ...! perform flux computations. 
   ... 
   ...! scattered to adjacent cells.
ENDDO 

ENDDO 
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For pure tetrahedral meshes, the face coloring 

algorithm will divide all faces into about 7 groups on each 
processor. The left panel in Fig. 1 shows the grouping 
statistics on a typical processor for a tetrahedral mesh 
containing 3,652,436 cells and 7,347,956 faces and 
partitioned by 24 processors. The right panel in Fig. 1 
shows the grouping statistics information on a typical 
processor about a pure hexahedral mesh containing 
40,151,112 hexahedra and 120,604,576 faces. 64 
processors are used to partition this mesh. On each 
processor the faces are divided into 8-9 groups. As can be 
seen from Fig. 1, on average, the majority of the groups 
contain a large number of faces with one or two smaller 
groups for the remainder of faces. The number of faces in 
each group determines the “vector length” for the face 
loops. With the full vectorization of the face loops, very 
high-sustained performance can be achieved.  

  
Fig. 1: Typical face grouping statistics. Left: a pure 

tetrahedral mesh with ne = 3,652,436 and nproc = 24. 
Right: a pure hexahedral mesh. ne = 40,151,112 and 

nproc = 64. 

3.2  Vectorization of the LU-SGS preconditioner 
 
To vectorize the LU-SGS preconditioner, we apply 

the truncated Neumann expansions of the inverse of 
triangular matrices (Benzi and Tuma 1999). For example, 
the Neumann expansion of the inverse of the lower 
triangular matrix is given by 

  (20) 
1

1

0

( ) ( 1)
n

k k

k

−
−

=

+ = −∑I L L

With the truncated Neumann expansions, the 
sequential computations needed to solve the triangular 
system exactly can be reduced to a finite number of 
matrix-vector multiplications, i.e. the L operator in Eq. 

(20). To utilize Eq. (20), we must rewrite the 
preconditioning matrix given by Eq. (10) as:  

  (21) ˆ( ) (P I L D I U= + + ˆ )

with  1L̂ LD−=  and . 1Û D U−=
 
Correspondingly, the forward sweep and the 

backward sweep become 

 *ˆ( )I L v v+ =  (22) 

and 

  (23) # 1ˆ( )I U v D v−+ = *

respectively. Recall that the diagonal matrix D is a scalar 
constant for each cell, thus producing no difficulty in the 
vectorization. If the first two terms of the Neumann 
expansion are kept, then  can be computed via *v

  (24) 
*

1

ˆ

( )
v v Lv

v L D v−

= −

= −

Similar expressions can be obtained for . 
Obviously, the vectorization can be easily achieved using 
Eq. (24). Numerical experiments show that keeping the 
first two terms of the Neumann expansion is sufficient to 
yield satisfactory convergence. The outcome of the 
vectorization is that the solver is roughly 50 times faster 
on the Cray X1 than on the Cray T3E (Tu, Aliabadi et al. 
2005b). 

#v

4.  PERFORMANCE ANALYSIS 

4.1  Slope limiter performance 
 
Here we use a simple oblique shock reflection 

problem ( , shock angle of 29 ) to test the 
limiter performance. The computational domain is a 

2.9M∞ =

4 1×  rectangle. Fig. 2(a-c) shows the pressure 
distribution at horizontal cut y = 0.5 compared with exact 
solution. Fig. 2(d) shows the convergence histories with 
different limiter parameter values. The effect of  in Eq. 
(17) can be clearly seen. When , the 
overshoots/undershoots around the shocks have been 
completely suppressed while the convergence of residual 
is only slightly affected. 

ε
410ε −=

 



  
         (a) no limiter.                       (b) . 210ε −=

  
         (c) .            (d) Convergence history. 410ε −=

Fig. 2: Performance of the limiter. Pressure at y = 0.5 (a-
c) and convergence history (d) for Shock reflect problem. 

4.2  Performance for flows at various Mach numbers 
 
We first present the solution of a low subsonic 

( ) inviscid flow around a cylinder. At this 
Mach number, the flow can be assumed incompressible 
and analytical solution is available for the pressure and 
velocity distributions on the cylinder surface. As can be 
seen in 

0.1M∞ =

Fig. 3, the pressure contours exhibit a nearly 
perfect symmetry that is true for inviscid incompressible 
flows. The pressure and velocity distributions agree very 
well with analytical solutions except that the vertical 
velocity component shows some discrepancy at the rear 
half of the cylinder surface.  
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(a) Pressure contours. 

 

 
 

(b) Pressure on the surface. 

 
(c) u-component on the surface. 

 
(d) v-component on the surface. 

Fig. 3: Solutions of low subsonic (M = 0.1) flow around a 
circular cylinder. 

Fig. 4 shows the solution of an inviscid hypersonic 
flow ( ) passing around a blunted body. To 
avoid the carbuncle problem, we choose the modified 
Steger-Warming scheme (Scalabrin and Boyd 2005) in 
simulating such supersonic blunted body problems. No 
carbuncle phenomenon can be seen in 

15M∞ =

Fig. 4 and the 
predicted pressure jump across the normal shock agrees 
very well with the theoretical value. 

         
(a) Pressure field.                  (b) Pressure distribution. 

Fig. 4: Solution of hypersonic flow (M = 15) around a 
blunted body. 

4.3  Parallel scalability 
 
We run a test case of about 36 million hybrid 

prsim/tetrahedron cells on the linux cluster JVN located in 
Army Research Laboratory (ARL). The case was run 
using 16, 32, 64, 128, 256 and 512 processors. Another 
case is a tetrahedral grid of 17 million elements. This case 
was run on Cray X1E using 8, 32, and 64 processors. The 
speedup vs. number of processors is shown in Fig. 5. As 
can be seen, CaMEL_Aero exhibits excellent scalability.  

 

 
(a) on JVN linux cluster. 
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(b) on Cray X1E. 
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Fig. 5: Scalability performance of CaMEL_Aero. 

4.4  Accuracy in predicting aerodynamic forces 
 
The first case is a laminar subsonic flow at 0.5M∞ =  

and Re 5000=  around the NACA0012 airfoil. The 
computational mesh contains 15649 hybrid 
triangular/quadrilateral cells. Fig 6(a) and (b) are the drag 
and lift convergence histories, respectively. Fig 6(c) and 
(d) show the pressure and friction coefficients distribution 
on the airfoil surface. Table 1 lists the computed drag and 
lift coefficients with and without slope limiting. The 
results agree well with results in the literature. It can be 



seen that slope limiting slightly increase the force 
coefficients but does not degrade the accuracy. 

 

 
(a) Drag convergence history. 

 
(b) Lift convergence history. 

 
(c) Friction coefficient 

distribution. 

 
(d) Pressure coefficient 

distribution. 

Fig 6: Solution of subsonic laminar flow (M = 0.5, Re = 
5000, AoA = ) around NACA0012 airfoil. 0

Table 1: Computed Force Coefficients of Subsonic 
Laminar Flow around the NACA0012 Airfoil. 

Dc  Lc  
 

no limiter 
limiter, 

 0.01ε= no limiter 
limiter, 

 0.01ε=
Due to 
pressure 0.02321007 0.02315961 0.00019712 0.00022851 

Due to 
friction 0.03216580 0.03228044 0.00000164 0.00000183 

Total 0.05537587 0.05544005 0.00019876 0.00023034 
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For turbulent flows, the Spalart-Allmaras Detached 

Eddy Simulation (SA-DES) turbulence model is 
employed to compute the eddy viscosity. The distance to 
the closest wall is computed with the help from 
KDTREE2 (Kennel 2004), a freely available software to 
efficiently search the nearest neighbors. We follow the 
guideline in (Lin, Percival et al. 1995)  to generate the 
high aspect ratio cells near the body. The first layer 
thickness is a function of the Reynolds number, i.e. 

  (25) * 0.90.172 Rey y+ =

where  is the non-dimensional first layer thickness next 
to the body.  is assumed in the first layer during the 
mesh generation stage.  

*y

1y+ ≈

 
Fig. 7 shows the eddy viscosity field of a low 

subsonic flow passing around the NACA0015 airfoil. The 
flight conditions are ,  and 
AoA ). The eddy viscosity at the rear part of the top 

surface of the airfoil is essential for the correct prediction 
of the aerodynamic drag and lift.  

0.1235M∞ = 6Re 1.5 10= ×

12=

 

 
Fig. 7: Eddy viscosity field of a low subsonic flow around 

NACA0015 airfoil ( , ). 0.1235M∞ = 6Re 1.5 10= ×

We also run a simulation about a supersonic flow 
passing around a spinning bullet. The flight conditions are 

2.7M∞ =  and . The mesh contains about 
40,151,112 unstructured hexahedral cells.  

5Re 9.71 10= ×
Fig. 8 shows 

the Mach number field. The base area is highly turbulent. 
The computed drag agrees favorably with the 
experimental data of 0.279. 
 

 
Fig. 8: Mach number field of supersonic flow around a 

spinning bullet ( , ). 2.7M∞ = 5Re 9.71 10= ×

4.5  Speed analysis 
 

The speed of the CaMEL_Aero is measured using a 
time-scale  defined as: cT

 proc

c

elem ts it k

n
T

n n n n
= runT  (26) 

where procn , , , , and  are the numbers of 
processors, elements, time steps, nonlinear iterations 
within each timestep, size of Krylov space, respectively, 
and  is the CPU time. For the CaMEL_Aero flow 
solver, the typical speed for an all-tet mesh simulation is 
about 1.0E-6 second on the Cray X1E for solving Navier-
Stokes equation and 3.4E-7 second for the turbulence 
equation. The speed for all-hex meshes is about 1.3 times 
that of all-tet meshes. The speed of solving turbulence 
equations is roughly one third of that of solving the 
Navier-Stokes equations, though the SA-DES turbulence 
equation contains only one unknown while the Navier-

elemn tsn itn kn

runT
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Stokes equations contain 5 unknowns. This can be 
attributed to the vast indirect addressing using 
unstructured data structures.  

4.6  Memory requirement 
 
The base memory (excluding krylov vectors) 

requirement is between 1.15-1.41 kbytes/element 
(considering 1 mbytes = 1048576 byte) depending on the 
mesh types; obviously, an all-hex mesh consumes more 
memory than an all-tet mesh on the element basis. The 
Krylov vector memory use is exactly 40 
bytes/elment/krylov (since we have 5 unknowns each 
element), regardless of element type. Since DES is 
decoupled from the Navier-Stokes equations, the Krylov 
vector space can be reused for the turbulence equation. 

CONCLUSIONS 
 
In this paper, we first describe some key ingredients 

in developing CaMEL_Aero, an unstructured finite 
volume solver for compressible flows. The focus is put on 
the Jacobian-free GMRES solver and the matrix-free LU-
SGS preconditioning technique. We also present our 
implementation of a simple slope limiting procedure 
which is suitable for arbitrarily unstructured meshes. We 
then discuss the parallelization and vectorization of the 
solver on parallel and vector computer platforms. The 
emphasis is put on the vectorization of face loops and the 
LU-SGS preconditioner. Finally, we analyze the 
performance of CaMEL_Aero through a few numerical 
examples. The performance shows that CaMEL_Aero is 
an accurate, efficient and robust numerical tool in 
compressible flow simulations. 
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